raycasting/level.cpp

167 lines
5.0 KiB
C++
Raw Normal View History

#include "level.h"
#include "maths.h"
2023-04-20 09:21:11 +08:00
#define WIDTH 10
#define HEIGHT 10
static float castRay(sf::Vector2f point, float direction, TileData* tileData);
static void getGridIndex(sf::Vector2f point, int* x, int* y);
static unsigned int level[WIDTH * HEIGHT] = {
2023-04-20 09:21:11 +08:00
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 0, 0, 0, 0, 2, 0, 1,
2023-04-20 09:21:11 +08:00
1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
1, 0, 0, 1, 0, 0, 0, 3, 0, 1,
2023-04-20 09:21:11 +08:00
1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
1, 0, 0, 1, 0, 0, 0, 4, 0, 1,
2023-04-20 09:21:11 +08:00
1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 1, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
int level_init()
{
return 1;
}
void level_update(sf::RenderTarget* renderTarget, unsigned int drawSize)
{
if (!renderTarget) return;
}
void level_end()
{
return;
}
float level_rayCast(sf::Vector2f point, float direction, TileData* tileData)
{
if (!tileData) return -1.f;
return castRay(point, direction, tileData);
}
2023-04-16 09:43:05 +08:00
void level_getDimensions(unsigned int* width, unsigned int* height)
{
*width = WIDTH;
*height = HEIGHT;
}
unsigned int level_getGridValue(unsigned int x, unsigned int y)
2023-04-01 05:56:26 +08:00
{
if (x < 0 || WIDTH <= x) return 0;
if (y < 0 || HEIGHT <= y) return 0;
2023-04-01 05:56:26 +08:00
return level[y * HEIGHT + x];
}
static float castRay(sf::Vector2f point, float direction, TileData* tileData)
{
int indexX, indexY;
getGridIndex(point, &indexX, &indexY);
2023-04-07 12:34:22 +08:00
// The horizontal* and vertical* variables correspond to variables, that
// are used to calculate the horizontal and vertical grid intersection points
// respectively. The horizontal and vertical grid intersections are done
// separately.
//
// The *Dy and *Dx variables are the deltas to the nearest grid boundary.
//
// The *StepX and *StepY variables are the regular x and y steps from the
// initial boundary intersection along the ray.
//
// The *ProjectedX and *ProjectedY variables are projected coordinates of the
// grid intersections along the ray.
//
// The *DistCoeff variables store the coefficient of sin(direction) used to
// calculate distance travelled along the ray, without having to do extra
// calls to sin(), as the direction doesn't change.
direction = maths_modulo(direction, 2.0f*PI); // modulo to keep the angle between 0 and 2 PI radians
bool goingDown = direction < PI;
int signDown = goingDown? 1 : -1;
float horizontalDy = (float)(indexY + goingDown) - point.y;
2023-04-07 12:34:22 +08:00
float horizontalDx = horizontalDy/tan(direction);
float horizontalStepX = ((float)signDown * (1.f/tan(direction)));
float horizontalStepY = (float)signDown;
2023-04-07 12:34:22 +08:00
float horizontalProjectedX = point.x + horizontalDx;
float horizontalProjectedY = indexY + goingDown;
2023-04-07 12:34:22 +08:00
float horizontalDistCoeff = sin(direction);
float horizontalRayDist = std::abs(horizontalDy/horizontalDistCoeff);
direction = maths_modulo(direction + 0.5f*PI, 2.0f*PI); // rotate angle by 90 degrees for ease of calaculation
bool goingRight = direction < PI;
int signRight = goingRight? 1 : -1;
float verticalDx = (float)(indexX + goingRight) - point.x;
2023-04-07 12:34:22 +08:00
float verticalDy = -verticalDx/tan(direction); // y axis needs to be flipped
float verticalStepY = -((float)signRight * (1.f/tan(direction))); // y axis also flipped here
float verticalStepX = (float)signRight;
2023-04-07 12:34:22 +08:00
float verticalProjectedY = point.y + verticalDy;
float verticalProjectedX = indexX + goingRight;
2023-04-07 12:34:22 +08:00
float verticalDistCoeff = sin(direction);
float verticalRayDist = std::abs(verticalDx/verticalDistCoeff);
unsigned int tries = WIDTH * HEIGHT;
while (tries--) {
2023-04-07 12:34:22 +08:00
int indexX0, indexY0; // store grid indices for horizontal intersections
int indexX1, indexY1; // store grid indices for vertical intersections
getGridIndex(sf::Vector2f(horizontalProjectedX, horizontalProjectedY), &indexX0, &indexY0);
getGridIndex(sf::Vector2f(verticalProjectedX, verticalProjectedY), &indexX1, &indexY1);
2023-04-07 12:34:22 +08:00
// If the ray going up or to left, the intersection points will give an index
// of the cells below or to the right of the cell boundaries. For those cases,
// the appropriate indices will be reduced by one.
indexY0 -= !goingDown;
indexX1 -= !goingRight;
2023-04-07 12:34:22 +08:00
bool inLevel0 = indexX0 != -1 && indexY0 != -1;
bool inLevel1 = indexX1 != -1 && indexY1 != -1;
2023-04-07 12:34:22 +08:00
if (!(inLevel0 || inLevel1)) break;
2023-04-07 12:34:22 +08:00
if (horizontalRayDist < verticalRayDist) {
unsigned int gridValue = level[indexY0 * WIDTH + indexX0];
if (gridValue) {
tileData->value = gridValue;
tileData->side = goingDown? NORTH : SOUTH;
return horizontalRayDist;
}
2023-04-07 12:34:22 +08:00
horizontalProjectedX += horizontalStepX;
horizontalProjectedY += horizontalStepY;
horizontalRayDist += std::abs(horizontalStepY/horizontalDistCoeff);
}
else {
unsigned int gridValue = level[indexY1 * WIDTH + indexX1];
if (gridValue) {
tileData->value = gridValue;
tileData->side = goingRight? WEST : EAST;
return verticalRayDist;
}
2023-04-07 12:34:22 +08:00
verticalProjectedX += verticalStepX;
verticalProjectedY += verticalStepY;
2023-04-07 12:34:22 +08:00
verticalRayDist += std::abs(verticalStepX/verticalDistCoeff);
}
};
return 1000.f;
}
static void getGridIndex(sf::Vector2f point, int* x, int* y)
{
*x = point.x;
*y = point.y;
if (*x < 0 || WIDTH <= *x) *x = -1;
if (*y < 0 || HEIGHT <= *y) *y = -1;
}