raycasting/level.cpp

206 lines
6.1 KiB
C++

#include "level.h"
#include <stdio.h>
#include "maths.h"
#define WIDTH 5
#define HEIGHT 5
static void drawGrid(sf::RenderTarget* renderTarget, unsigned int tileSize);
static void drawGridLine(sf::RenderTarget* renderTarget, float step, bool isHorizontal);
static sf::Vertex getGridLineVertex(float n, float maxDimension, bool isStart, bool isHorizontal);
static float castRay(sf::Vector2f point, float direction);
static void getGridIndex(sf::Vector2f point, int* x, int* y);
static unsigned int level[WIDTH * HEIGHT] = {
0, 0, 1, 1, 1,
0, 0, 0, 0, 0,
1, 0, 1, 0, 1,
1, 0, 0, 0, 1,
1, 0, 1, 1, 1,
};
int level_init()
{
printf("level_init()\n");
return 1;
}
void level_update(sf::RenderTarget* renderTarget, unsigned int drawSize)
{
if (!renderTarget) return;
drawGrid(renderTarget, drawSize/WIDTH);
}
void level_end()
{
printf("level_end()\n");
return;
}
float level_rayCastDistance(sf::Vector2f point, float direction)
{
return castRay(point, direction);
}
void level_getDimensions(unsigned int* width, unsigned int* height)
{
*width = WIDTH;
*height = HEIGHT;
}
static void drawGrid(sf::RenderTarget* renderTarget, unsigned int tileSize)
{
for (unsigned int x = 0; x < WIDTH; x++) {
for (unsigned int y = 0; y < HEIGHT; y++) {
if (!level[y * HEIGHT + x]) continue;
sf::RectangleShape rectangle(sf::Vector2f(tileSize, tileSize));
rectangle.setPosition((float)x * tileSize, (float)y * tileSize);
renderTarget->draw(rectangle);
}
}
drawGridLine(renderTarget, tileSize, true);
drawGridLine(renderTarget, tileSize, false);
}
static void drawGridLine(sf::RenderTarget* renderTarget, float step, bool isHorizontal)
{
unsigned int lines = isHorizontal? WIDTH : HEIGHT;
for (unsigned int n = 0; n < lines; n++) {
if (n == 0) continue;
float offset = (float)n * step;
float maxDimension = (float)lines * step;
sf::Vertex line[] =
{
getGridLineVertex(offset, maxDimension, true, isHorizontal),
getGridLineVertex(offset, maxDimension, false, isHorizontal)
};
renderTarget->draw(line, 2, sf::Lines);
}
}
static sf::Vertex getGridLineVertex(float offset, float maxDimension, bool isStart, bool isHorizontal)
{
sf::Vertex start;
sf::Vertex end;
if (isHorizontal) {
start = sf::Vertex(sf::Vector2f(offset, 0));
end = sf::Vertex(sf::Vector2f(offset, maxDimension));
}
else {
start = sf::Vertex(sf::Vector2f(0, offset));
end = sf::Vertex(sf::Vector2f(maxDimension, offset));
}
sf::Color color(100, 100, 100);
start.color = color;
end.color = color;
return isStart? start : end;
}
static float castRay(sf::Vector2f point, float direction)
{
int indexX, indexY;
getGridIndex(point, &indexX, &indexY);
// The horizontal* and vertical* variables correspond to variables, that
// are used to calculate the horizontal and vertical grid intersection points
// respectively. The horizontal and vertical grid intersections are done
// separately.
//
// The *Dy and *Dx variables are the deltas to the nearest grid boundary.
//
// The *StepX and *StepY variables are the regular x and y steps from the
// initial boundary intersection along the ray.
//
// The *ProjectedX and *ProjectedY variables are projected coordinates of the
// grid intersections along the ray.
//
// The *DistCoeff variables store the coefficient of sin(direction) used to
// calculate distance travelled along the ray, without having to do extra
// calls to sin(), as the direction doesn't change.
direction = maths_modulo(direction, 2.0f*PI); // modulo to keep the angle between 0 and 2 PI radians
bool goingDown = direction < PI;
int signDown = goingDown? 1 : -1;
float horizontalDy = (float)(indexY + goingDown) - point.y;
float horizontalDx = horizontalDy/tan(direction);
float horizontalStepX = ((float)signDown * (1.f/tan(direction)));
float horizontalStepY = (float)signDown;
float horizontalProjectedX = point.x + horizontalDx;
float horizontalProjectedY = indexY + goingDown;
float horizontalDistCoeff = sin(direction);
float horizontalRayDist = std::abs(horizontalDy/horizontalDistCoeff);
direction = maths_modulo(direction + 0.5f*PI, 2.0f*PI); // rotate angle by 90 degrees for ease of calaculation
bool goingRight = direction < PI;
int signRight = goingRight? 1 : -1;
float verticalDx = (float)(indexX + goingRight) - point.x;
float verticalDy = -verticalDx/tan(direction); // y axis needs to be flipped
float verticalStepY = -((float)signRight * (1.f/tan(direction))); // y axis also flipped here
float verticalStepX = (float)signRight;
float verticalProjectedY = point.y + verticalDy;
float verticalProjectedX = indexX + goingRight;
float verticalDistCoeff = sin(direction);
float verticalRayDist = std::abs(verticalDx/verticalDistCoeff);
unsigned int tries = WIDTH * HEIGHT;
while (tries--) {
int indexX0, indexY0; // store grid indices for horizontal intersections
int indexX1, indexY1; // store grid indices for vertical intersections
getGridIndex(sf::Vector2f(horizontalProjectedX, horizontalProjectedY), &indexX0, &indexY0);
getGridIndex(sf::Vector2f(verticalProjectedX, verticalProjectedY), &indexX1, &indexY1);
// If the ray going up or to left, the intersection points will give an index
// of the cells below or to the right of the cell boundaries. For those cases,
// the appropriate indices will be reduced by one.
indexY0 -= !goingDown;
indexX1 -= !goingRight;
bool inLevel0 = indexX0 != -1 && indexY0 != -1;
bool inLevel1 = indexX1 != -1 && indexY1 != -1;
if (!(inLevel0 || inLevel1)) break;
if (horizontalRayDist < verticalRayDist) {
if (level[indexY0 * WIDTH + indexX0]) return horizontalRayDist;
horizontalProjectedX += horizontalStepX;
horizontalProjectedY += horizontalStepY;
horizontalRayDist += std::abs(horizontalStepY/horizontalDistCoeff);
}
else {
if (level[indexY1 * WIDTH + indexX1]) return verticalRayDist;
verticalProjectedX += verticalStepX;
verticalProjectedY += verticalStepY;
verticalRayDist += std::abs(verticalStepX/verticalDistCoeff);
}
};
return 1000.f;
}
static void getGridIndex(sf::Vector2f point, int* x, int* y)
{
*x = point.x;
*y = point.y;
if (*x < 0 || WIDTH <= *x) *x = -1;
if (*y < 0 || HEIGHT <= *y) *y = -1;
}