#include "level.h" #include #include "maths.h" #define WIDTH 5 #define HEIGHT 5 static void drawGrid(sf::RenderTarget* renderTarget, unsigned int tileSize); static void drawGridLine(sf::RenderTarget* renderTarget, float step, bool isHorizontal); static sf::Vertex getGridLineVertex(float n, float maxDimension, bool isStart, bool isHorizontal); static float castRay(sf::Vector2f point, float direction); static void getGridIndex(sf::Vector2f point, int* x, int* y); static unsigned int level[WIDTH * HEIGHT] = { 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, }; int level_init() { printf("level_init()\n"); return 1; } void level_update(sf::RenderTarget* renderTarget, unsigned int drawSize) { if (!renderTarget) return; drawGrid(renderTarget, drawSize/WIDTH); } void level_end() { printf("level_end()\n"); return; } float level_rayCastDistance(sf::Vector2f point, float direction) { return castRay(point, direction); } static void drawGrid(sf::RenderTarget* renderTarget, unsigned int tileSize) { for (unsigned int x = 0; x < WIDTH; x++) { for (unsigned int y = 0; y < HEIGHT; y++) { if (!level[y * HEIGHT + x]) continue; sf::RectangleShape rectangle(sf::Vector2f(tileSize, tileSize)); rectangle.setPosition((float)x * tileSize, (float)y * tileSize); renderTarget->draw(rectangle); } } drawGridLine(renderTarget, tileSize, true); drawGridLine(renderTarget, tileSize, false); } static void drawGridLine(sf::RenderTarget* renderTarget, float step, bool isHorizontal) { unsigned int lines = isHorizontal? WIDTH : HEIGHT; for (unsigned int n = 0; n < lines; n++) { if (n == 0) continue; float offset = (float)n * step; float maxDimension = (float)lines * step; sf::Vertex line[] = { getGridLineVertex(offset, maxDimension, true, isHorizontal), getGridLineVertex(offset, maxDimension, false, isHorizontal) }; renderTarget->draw(line, 2, sf::Lines); } } static sf::Vertex getGridLineVertex(float offset, float maxDimension, bool isStart, bool isHorizontal) { sf::Vertex start; sf::Vertex end; if (isHorizontal) { start = sf::Vertex(sf::Vector2f(offset, 0)); end = sf::Vertex(sf::Vector2f(offset, maxDimension)); } else { start = sf::Vertex(sf::Vector2f(0, offset)); end = sf::Vertex(sf::Vector2f(maxDimension, offset)); } sf::Color color(100, 100, 100); start.color = color; end.color = color; return isStart? start : end; } static float castRay(sf::Vector2f point, float direction) { int indexX, indexY; getGridIndex(point, &indexX, &indexY); // The horizontal* and vertical* variables correspond to variables, that // are used to calculate the horizontal and vertical grid intersection points // respectively. The horizontal and vertical grid intersections are done // separately. // // The *Dy and *Dx variables are the deltas to the nearest grid boundary. // // The *StepX and *StepY variables are the regular x and y steps from the // initial boundary intersection along the ray. // // The *ProjectedX and *ProjectedY variables are projected coordinates of the // grid intersections along the ray. // // The *DistCoeff variables store the coefficient of sin(direction) used to // calculate distance travelled along the ray, without having to do extra // calls to sin(), as the direction doesn't change. direction = maths_modulo(direction, 2.0f*PI); // modulo to keep the angle between 0 and 2 PI radians bool goingDown = direction < PI; int signDown = goingDown? 1 : -1; float horizontalDy = (float)(indexY + goingDown) - point.y; float horizontalDx = horizontalDy/tan(direction); float horizontalStepX = ((float)signDown * (1.f/tan(direction))); float horizontalStepY = (float)signDown; float horizontalProjectedX = point.x + horizontalDx; float horizontalProjectedY = indexY + goingDown; float horizontalDistCoeff = sin(direction); float horizontalRayDist = std::abs(horizontalDy/horizontalDistCoeff); direction = maths_modulo(direction + 0.5f*PI, 2.0f*PI); // rotate angle by 90 degrees for ease of calaculation bool goingRight = direction < PI; int signRight = goingRight? 1 : -1; float verticalDx = (float)(indexX + goingRight) - point.x; float verticalDy = -verticalDx/tan(direction); // y axis needs to be flipped float verticalStepY = -((float)signRight * (1.f/tan(direction))); // y axis also flipped here float verticalStepX = (float)signRight; float verticalProjectedY = point.y + verticalDy; float verticalProjectedX = indexX + goingRight; float verticalDistCoeff = sin(direction); float verticalRayDist = std::abs(verticalDx/verticalDistCoeff); unsigned int tries = WIDTH * HEIGHT; while (tries--) { int indexX0, indexY0; // store grid indices for horizontal intersections int indexX1, indexY1; // store grid indices for vertical intersections getGridIndex(sf::Vector2f(horizontalProjectedX, horizontalProjectedY), &indexX0, &indexY0); getGridIndex(sf::Vector2f(verticalProjectedX, verticalProjectedY), &indexX1, &indexY1); // If the ray going up or to left, the intersection points will give an index // of the cells below or to the right of the cell boundaries. For those cases, // the appropriate indices will be reduced by one. indexY0 -= !goingDown; indexX1 -= !goingRight; bool inLevel0 = indexX0 != -1 && indexY0 != -1; bool inLevel1 = indexX1 != -1 && indexY1 != -1; if (!(inLevel0 || inLevel1)) break; if (horizontalRayDist < verticalRayDist) { if (level[indexY0 * WIDTH + indexX0]) return horizontalRayDist; horizontalProjectedX += horizontalStepX; horizontalProjectedY += horizontalStepY; horizontalRayDist += std::abs(horizontalStepY/horizontalDistCoeff); } else { if (level[indexY1 * WIDTH + indexX1]) return verticalRayDist; verticalProjectedX += verticalStepX; verticalProjectedY += verticalStepY; verticalRayDist += std::abs(verticalStepX/verticalDistCoeff); } }; return 1000.f; } static void getGridIndex(sf::Vector2f point, int* x, int* y) { *x = point.x; *y = point.y; if (*x < 0 || WIDTH <= *x) *x = -1; if (*y < 0 || HEIGHT <= *y) *y = -1; }